Friday, 17 February 2017

Indian Space Research Organisation(ISRO)

Image result for isro

The Indian Space Research Organization is the space agency of the Government of Republic of India headquartered in the city of Bengaluru.It was established in 15 august 1969 ISRO built India's first satelliteAryabhata, which was launched by the Soviet Union on 19 April 1975. It was named after the Mathematician Aryabhata but it was not successful to place in orbit In 1980, Rohini was to become the first satellite to be placed in orbit by an Indian-made launch vehicle, SLV-3.
ISRO subsequently developed two other rockets: the Polar Satellite Launch Vehicle (PSLV) for launching satellites into polar orbits and the Geosynchronous Satellite Launch Vehicle (GSLV) for placing satellites into geostationary orbits. These rockets have launched numerous communications satellites and earth observation satellites. Satellite navigation systems like GAGAN and IRNSS have been deployed. In January 2014, ISRO successfully used an indigenous cryogenic engine in a GSLV-D5 launch of the GSAT-14.
ISRO sent one lunar orbiter, Chandrayaan-1, on 22 October 2008 and one Mars orbiter, Mars Orbiter Mission, which successfully entered Mars orbit on 24 September 2014, making India the first nation to succeed on its first attempt, and ISRO the fourth space agency in the world as well as the first space agency in Asia to successfully reach Mars orbit.
 Future plans include the development of GSLV Mk III,(for the launch of heavier satellites), ULV, development of a reusable launch vehiclehuman spaceflightfurther lunar exploration, interplanetary probes, a solar spacecraft mission, etc.
On 18 June 2016 ISRO successfully set a record with a launch of 20 satellites in a single payload, one being a satellite from Google. On 15 February 2017, ISRO launched 104 satellites in a single rocket (PSLV-C37) and created a world record.
The Indian National Committee for Space Research (INCOSPAR) was set up in 1962 by Jawaharlal Nehru, India's first Prime Minister.
In 2008 India launched as many as 11 satellites, including nine from other countries and went on to become the first nation to launch 10 satellites on one rocket. ISRO has successfully put into operation two major satellite systems: Indian National Satellites (INSAT) for communication services and Indian Remote Sensing (IRS) satellites for management of natural resources.
Organisation structure and facilities:
ISRO is managed by the Department of Space (DoS) of the Government of India. DoS itself falls under the authority of the Prime Minister and the Space Commission, and manages the following agencies and institutes:
Indian Space Research Organisation
Ø  Liquid Propulsion Systems Centre (LPSC), Thiruvananthapuram.
Ø  ISRO Inertial Systems Unit (IISU), Thiruvananthapuram.
Ø  Laboratory for Electro-Optics Systems (LEOS), Bangalore.
Ø  Antrix Corporation - The marketing arm of ISRO, Bangalore.
Ø  Physical Research Laboratory (PRL), Ahmedabad.
Indian Institute of Space Science and Technology (IIST), Thiruvananthapuram - India's space university.
Research facilities:
Facility
Location
Description
The largest ISRO base is also the main technical centre and the venue of development of the SLV-3ASLV, and PSLV series. The base supports India's Thumba Equatorial Rocket Launching Station and the Rohini Sounding Rocket programme. This facility is also developing the GSLV series.
The LPSC handles design, development, testing and implementation of liquid propulsion control packages, liquid stages and liquid engines for launch vehicles and satellites. The testing of these systems is largely conducted at IPRC at Mahendragiri. The LPSC, Bangalore also produces precision transducers.
Solar planetary physics, infrared astronomy, geo-cosmo physics, plasma physics, astrophysicsarchaeology, and hydrology are some of the branches of study at this institute. An observatory at Udaipur also falls under the control of this institution.
Research & Development in the field of semiconductor technology, micro-electromechanical systems and process technologies relating to semiconductor processing.
The NARL carries out fundamental and applied research in Atmospheric and Space Sciences.
The SAC deals with the various aspects of practical use of space technology. Among the fields of research at the SAC are geodesysatellite based telecommunicationssurveyingremote sensingmeteorology, environment monitoring etc. The SAC additionally operates the Delhi Earth Station which is located in Delhi and is used for demonstration of various SATCOM experiments in addition to normal SATCOM operations. .
Providing developmental support to North East by undertaking specific application projects using remote sensing, GIS, satellite communication and conducting space science research.

Test Facilities:
Facility
Location
Description
Formerly called LPSC-Mahendragiri, was declared a separate centre. It handles testing and assembly of liquid propulsion control packages, liquid engines and stages for launch vehicles and satellites.

Construction and launch facilities:
Facility
Location
Description
The venue of eight successful spacecraft projects is also one of the main satellite technology bases of ISRO. The facility serves as a venue for implementing indigenous spacecraft in India. The satellites Ayrabhata, Bhaskara, APPLE, and IRS-1A were constructed at this site, and the IRS and INSAT satellite series are presently under development here.
The Unit of ISRO responsible for the development of altitude sensors for all satellites. The high precision optics for all cameras and payloads in all ISRO satellites including Chandrayaan-1 are developed at this laboratory.   Located at Peenya Industrial Estate, Bangalore.
With multiple sub-sites the Sriharikota island facility acts as a launching site for India's satellites. The Sriharikota facility is also the main launch base for India's sounding rockets. The centre is also home to India's largest Solid Propellant Space Booster Plant (SPROB) and houses the Static Test and Evaluation Complex (STEX). The Second Vehicle Assembly Building (SVAB) at Sriharikota is being realised as an additional integration facility, with suitable interfacing to a second launch pad.
TERLS is used to launch sounding rockets.

Tracking and control facilities:
Facility
Location
Description
This network receives, processes, archives and distributes the spacecraft health data and payload data in real time. It can track and monitor satellites up to very large distances, even beyond the Moon.
The NRSC applies remote sensing to manage natural resources and study aerial surveying. With centres at Balanagar and Shadnagar it also has training facilities at Dehradun in form of the Indian Institute of Remote Sensing.
Bangalore (headquarters) and a number of ground stations throughout India and World.
Software development, ground operations, Tracking Telemetry and Command (TTC), and support is provided by this institution. ISTRAC has Tracking stations throughout the country and all over the world in Port Louis (Mauritius), Bearslake (Russia), Biak (Indonesia) and Brunei.
Geostationary satellite orbit raising, payload testing, and in-orbit operations are performed at this facility. The MCF has earth stations and Satellite Control Centre (SCC) for controlling satellites. A second MCF-like facility named 'MCF-B' is being constructed at Bhopal.


Human resource development:
Facility
Location
Description
Indian Institute of Remote Sensing (IIRS), an unit of the Indian Space Research Organisation (ISRO), Department of Space, Govt. of India is a premier training and educational institute set up for developing trained professionals (P.G and PhD level) in the field of Remote Sensing, Geoinformatics and GPS Technology for Natural Resources, Environmental and   Disaster Management. IIRS is also executing many R&D projects on Remote Sensing and GIS for societal applications. IIRS also runs various Outreach programmes (Live & Interactive and e-learning) to build trained skilled human resources in the field of Remote Sensing and Geospatial technologies.
 The e-learning portal of IIRS is hosted at http://elearning.iirs.gov.in
The institute offers undergraduate and graduate courses in Aerospace engineering, Avionics and Physical Sciences. The students of the first three batches of IIST have been inducted into different ISRO centres as of September 2012.
Development and Educational Communication Unit
The centre works for education, research, and training, mainly in conjunction with the INSAT programme. The main activities carried out at DECU include GRAMSAT and EDUSAT projects. The Training and Development Communication Channel (TDCC) also falls under the operational control of the DECU.

Commercial wing (Antrix Corporation):
Its objective is to promote the ISRO's products, services and technologies. It was incorporated as a private limited company owned by the Indian government on 28 September 1992. The company is a Public Sector Undertaking (PSU), wholly owned by the Government of India. It is administered by the Department of Space (DoS).
It had dealings with EADS AstriumIntelsat, Avanti Group, WorldSpace, Inmarsat, and other space institutions in Europe, Middle East and South East Asia.
It was awarded 'Miniratna' status by the government in 2008  and achieved a turnover of Rs. 18 billion in 2014–15

Launch vehicle fleet

During the 1960s and 1970s, India initiated its own launch vehicle programme owing to geopolitical and economic considerations. In the 1960s–1970s, the country successfully developed a sounding rockets programme, and by the 1980s, research had yielded the Satellite Launch Vehicle-3 and the more advanced Augmented Satellite Launch Vehicle (ASLV), complete with operational supporting infrastructure. ISRO further applied its energies to the advancement of launch vehicle technology resulting in the creation of PSLV and GSLV technologies.
Satellite Launch Vehicle (SLV)
The Satellite Launch Vehicle, usually known by its abbreviation SLV or SLV-3 was a 4-stage solid-propellant light launcher. It was intended to reach a height of 500 km and carry a payload of 40 kg. Its first launch took place in 1979 with 2 more in each subsequent year, and the final launch in 1983. Only two of its four test flights were successful.
Augmented Satellite Launch Vehicle (ASLV)
The Augmented Satellite Launch Vehicle, usually known by its abbreviation ASLV was a 5-stage solid propellant rocket with the capability of placing a 150 kg satellite into Low Earth Orbit. This project was started by the ISRO during the early 1980s to develop technologies needed for a payload to be placed into a geostationary orbit. Its design was based on Satellite Launch Vehicle.[34] The first launch test was held in 1987, and after that 3 others followed in 1988, 1992 and 1994, out of which only 2 were successful, before it was decommissioned.

Polar Satellite Launch Vehicle (PSLV):
The Polar Satellite Launch Vehicle, commonly known by its abbreviation PSLV, is an expendable launch system developed by ISRO to allow India to launch its Indian Remote Sensing (IRS) satellites into Sun synchronous orbits. PSLV can also launch small satellites into geostationary transfer orbit (GTO). The reliability and versatility of the PSLV is proven by the fact that it has launched, as of 2014, 71 satellites/spacecraft (31 Indian and 40 foreign) into a variety of orbits. The maximum number of satellites launched by the PSLV in a single launch is 20, in the PSLV-C34 launch on 22 June 2016 (Earth observation satellite (Cartosat-2 Series) and 19 others in the designated polar Sun Synchronous Orbit).
Decade wise summary of PSLV launches:
Decade
Successful
Partial success
Failures
Total
1990s
3
1
1
5
2000s
11
0
0
11
2010s
22
0
0
22

Geosynchronous Satellite Launch Vehicle (GSLV):
The Geosynchronous Satellite Launch Vehicle, usually known by its abbreviation GSLV, is an expendable launch system developed to enable India to launch its INSAT-type satellites into geostationary orbit and to make India less dependent on foreign rockets. At present, it is ISRO's second-heaviest satellite launch vehicle and is capable of putting a total payload of up to 5 tons to Low Earth Orbit. The vehicle is built by India with the cryogenic engine purchased from Russia while the ISRO develops its own engine programme.
In a setback for ISRO, the attempt to launch the GSLV, GSLV-F06 carrying GSAT-5P, failed on 25 December 2010. The initial evaluation implies that loss of control for the strap-on boosters caused the rocket to veer from its intended flight path, forcing a programmed detonation. Sixty-four seconds into the first stage of flight, the rocket began to break up due to the acute angle of attack. The body housing the 3rd stage, the cryogenic stage, incurred structural damage, forcing the range safety team to initiate a programmed detonation of the rocket.
On 5 January 2014, GSLV-D5 successfully launched GSAT-14 into intended orbit. This also marked first successful flight using indigenous cryogenic engine, making India the sixth country in the world to have this technology.
Again on 27 August 2015, GSLV-D6 launched GSAT-6 into the transfer orbit. ISRO used the indigenously developed Cryogenic Upper Stage (CUS) third time on board in this GSLV flight.
On 8 September 2016, GSLV-F05 successfully launched INSAT-3DR, an advanced weather satellite, weighing 2211 kg into a Geostationary Transfer Orbit (GTO). GSLV is designed to inject 2 - 2.5 Tonne class of satellites into GTO. The launch took place from the Second Launch Pad at Satish Dhawan Space Centre SHAR (SDSC SHAR), Sriharikota. GSLV-F05 flight is significant since it is the first operational flight of GSLV carrying Cryogenic Upper Stage (CUS). The indigenously developed CUS was carried on board for the fourth time during a GSLV flight in the GSLV-F05 flight. GSLV-F05 vehicle is configured with all its three stages including the CUS similar to the ones successfully flown during the previous GSLV-D5 and D6 missions in January 2014 and August 2015. 
Decade wise summary of GSLV Launches:
Decade
Successful
Partial success
Failures
Total
2000s
2
2
1
5
2010s
3
0
2
5

Geosynchronous Satellite Launch Vehicle Mark-III (GSLV III):

GSLV-Mk III is a launcher which is currently under development. It is expected to launch four tonne satellites into geosynchronous transfer orbit. GSLV-Mk III is conceived as a three-stage vehicle with a 110 tonne core liquid propellant stage (L-110) flanked by two 200 tonne solid propellant strap-on booster motors (S-200). The upper stage will be cryogenic with a propellant loading of 25 tonne (C-25). The vehicle will have a lift-off mass of about 640 tonnes and be 43.43 metres tall. According to ISRO, the payload fairing has a diameter of 5 metres and a payload volume of 100 cubic metres. It will allow India to become less dependent on foreign rockets for heavy lifting.
On 18 December 2014, ISRO successfully conducted an experimental test-flight of GSLV MK III carrying a crew module, to be used in future human space missions. This suborbital test flight demonstrated the performance of GSLV Mk III in the atmosphere.

Satellite programmes:
                                                                        
India's first satellite, the Aryabhata, was launched by the Soviet Union on 19 April 1975 from Kapustin Yar using a Cosmos-3M launch vehicle. This was followed by the Rohini series of experimental satellites which were built and launched indigenously. At present, ISRO operates a large number of earth observation satellites.


The INSAT series
INSAT (Indian National Satellite System) is a series of multipurpose geostationary satellites launched by ISRO to satisfy the telecommunications, broadcasting, meteorology and search-and-rescue needs of India. Commissioned in 1983, INSAT is the largest domestic communication system in the Asia-Pacific Region. It is a joint venture of the Department of Space, Department of Telecommunications, India Meteorological DepartmentAll India Radio and Doordarshan. The overall coordination and management of INSAT system rests with the Secretary-level INSAT Coordination Committee.
The IRS series
Indian Remote Sensing satellites (IRS) are a series of earth observation satellites, built, launched and maintained by ISRO. The IRS series provides remote sensing services to the country. The Indian Remote Sensing Satellite system is the largest constellation of remote sensing satellites for civilian use in operation today in the world. All the satellites are placed in polar Sun-synchronous orbit and provide data in a variety of spatial, spectral and temporal resolutions to enable several programmes to be undertaken relevant to national development. The initial versions are composed of the 1 (ABCD) nomenclature. The later versions are named based on their area of application including OceanSat, CartoSat, ResourceSat.
Radar Imaging Satellites
ISRO currently operates two Radar Imaging SatellitesRISAT-1 was launched from Sriharikota Spaceport on 26 April 2012 on board a PSLV. RISAT-1 carries a C-band Synthetic Aperture Radar (SAR) payload, operating in a multi-polarisation and multi-resolution mode and can provide images with coarse, fine and high spatial resolutions. India also operates RISAT-2 which was launched in 2009 and acquired from Israel at a cost $110 million.
Other satellites
ISRO has also launched a set of experimental geostationary satellites known as the GSAT series. Kalpana-1, ISRO's first dedicated meteorological satellite, was launched by the Polar Satellite Launch Vehicle on 12 September 2002. The satellite was originally known as MetSat-1. In February 2003 it was renamed to Kalpana-1 by the Indian Prime Minister Atal Bihari Vajpayee in memory of Kalpana Chawla – a NASA astronaut of Indian origin who perished in Space Shuttle Columbia.
ISRO has also successfully launched the Indo-French satellite SARAL on 25 February 2013, 12:31 UTC. SARAL (or "Satellite with ARgos and ALtiKa") is a cooperative altimetry technology mission. It is being used for monitoring the oceans surface and sea-levels. AltiKa will measure ocean surface topography with an accuracy of 8 mm, against 2.5 cm on average using current-generation altimeters, and with a spatial resolution of 2 km.
In June 2014, ISRO launched French Earth Observation Satellite SPOT-7 (mass 714 kg) along with Singapore's first nano satellite VELOX-I, Canada's satellite CAN-X5, Germany's satellite AISAT, via the PSLV-C23 launch vehicle. It was ISRO's 4th commercial launch.

GAGAN satellite navigation system:
The Ministry of Civil Aviation has decided to implement an indigenous Satellite-Based Regional GPS Augmentation System also known as Space-Based Augmentation System (SBAS) as part of the Satellite-Based Communications, Navigation and Surveillance (CNS)/Air Traffic Management (ATM) plan for civil aviation. The Indian SBAS system has been given an acronym GAGAN – GPS Aided GEO Augmented Navigation. A national plan for satellite navigation including implementation of Technology Demonstration System (TDS) over the Indian air space as a proof of concept has been prepared jointly by Airports Authority of India (AAI) and ISRO. TDS was successfully completed during 2007 by installing eight Indian Reference Stations (INRESs) at eight Indian airports and linked to the Master Control Centre (MCC) located near Bangalore.
The first GAGAN navigation payload has been fabricated and it was proposed to be flown on GSAT-4 during Apr 2010. However, GSAT-4 was not placed in orbit as GSLV-D3 could not complete the mission. Two more GAGAN payloads will be subsequently flown, one each on two geostationary satellites, GSAT-8 and GSAT-10. On 12 May 2012, ISRO announced the successful testing of its indigenous cryogenic engine for 200 seconds for its forthcoming GSLV-D5 flight.
IRNSS satellite navigation system
IRNSS is an independent regional navigation satellite system being developed by India. It is designed to provide accurate position information service to users in India as well as the region extending up to 1500 km from its boundary, which is its primary service area. IRNSS will provide two types of services, namely, Standard Positioning Service (SPS) and Restricted Service (RS) and is expected to provide a position accuracy of better than 20 m in the primary service area. It is an autonomous regional satellite navigation system being developed by Indian Space Research Organisation which would be under total control of Indian government. The requirement of such a navigation system is driven by the fact that access to Global Navigation Satellite Systems like GPS is not guaranteed in hostile situations. ISRO initially planned to launch the constellation of satellites between 2012 and 2014 but the project got delayed by nearly 2 years.
ISRO on 1 July 2013, at 23:41 IST launched from Sriharikota the First Indian Navigation Satellite the IRNSS-1A. The IRNSS-1A was launched aboard PSLV-C22. The constellation would be comprising 7 satellites of I-1K bus each weighing around 1450 Kilogrammes, with three satellites in the Geostationary Earth Orbit (GEO) and 4 in Geosynchronous Earth Orbit(GSO). The constellation would be completed around April 2016.
On 4 April 2014, at 17:14 IST ISRO has launched IRNSS-1B from Sriharikota, its second of seven IRNSS series. 19 minutes after launch PSLV-C24 was successfully injected into its orbit.IRNSS-1C was launched on 16 October 2014, and IRNSS-1D on 28 March 2015.
On 20 January 2016, 9:31 hrs IST IRNSS-1E was launched successfully aboard PSLV-C31 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. On 10 March 2016, 4:31 hrs IST IRNSS-1F was launched successfully aboard PSLV-C32 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. On 28 April 2016, 12:50 hrs IST IRNSS-1G was launched successfully aboard PSLV-XL-C33 from Satish Dhawan Space Centre (SDSC) SHAR, Sriharikota. This Satellite is the seven and the last in the IRNSS system and completes India's own navigation system
As of January 2016, ISRO was in the process of developing 4 back-up satellites to the constellation of existing IRNSS satellites.

Human spaceflight programme
The Indian Space Research Organisation has proposed a budget of 124 billion (US$1.8 billion) for its human spaceflight programme. According to the Space Commission which recommended the budget, an unmanned flight will be launched after 7 years of final approval and a manned mission will be launched after 7 years of funding. If realised in the stated time-frame, India will become the fourth nation, after the USSR, USA and China, to successfully carry out manned missions indigenously. The government of India has not yet approved the mission as of October 2016.
Technology demonstration
The Space Capsule Recovery Experiment (SCRE or more commonly SRE or SRE-1) is an experimental Indian spacecraft which was launched using the PSLV C7 rocket, along with three other satellites. It remained in orbit for 12 days before re-entering the Earth's atmosphere and splashing down into the Bay of Bengal. The SRE-1 was designed to demonstrate the capability to recover an orbiting space capsule, and the technology for performing experiments in the microgravity conditions of an orbiting platform. It was also intended to test thermal protection, navigation, guidance, control, deceleration and flotation systems, as well as study hypersonic aero-thermodynamics, management of communication blackouts, and recovery operations. ISRO also plans to launch SRE-2 and SRE-3 in the near future to test advanced re-entry technology for future manned missions.
Astronaut training and other facilities
ISRO will set up an astronaut training centre in Bangalore to prepare personnel for flights on board the crewed vehicle. The centre will use simulation facilities to train the selected astronauts in rescue and recovery operations and survival in zero gravity, and will undertake studies of the radiation environment of space. ISRO will build centrifuges to prepare astronauts for the acceleration phase of the mission. It also plans to build a new Launch pad to meet the target of launching a manned space mission in 7 years of funding clearance. This would be the third launchpad at the Satish Dhawan Space Centre, Sriharikota.
Development of crew vehicle
The Indian Space Research Organisation (ISRO) is working towards a maiden manned Indian space mission vehicle that can carry three astronauts for seven days in a near earth orbit. The Indian manned spacecraft temporarily named as Orbital Vehicle intends to be the basis of indigenous Indian human spaceflight programme. The capsule will be designed to carry three people, and a planned upgraded version will be equipped with a rendezvous and docking capability. In its maiden manned mission, ISRO's largely autonomous 3-ton capsule will orbit the Earth at 400 km in altitude for up to seven days with a two-person crew on board. The crew vehicle would launch atop of ISRO's GSLV Mk II, currently under development. The GSLV Mk II features an indigenously developed cryogenic upper-stage engine. The first test of the cryogenic engine, held on 15 April 2010, failed as the cryogenic phase did not perform as expected and rocket deviated from the planned trajectory. However the second test of the indigenous cryogenic engine was successful on 5 January 2014 and on 27 August 2015.
Planetary sciences and astronomy
India's space era dawned when the first two-stage sounding rocket was launched from Thumba in 1963.
There is a national balloon launching facility at Hyderabad jointly supported by TIFR and ISRO. This facility has been extensively used for carrying out research in high energy (i.e., X- and gamma ray) astronomy, IR astronomy, middle atmospheric trace constituents including CFCs & aerosols, ionisation, electric conductivity and electric fields.
The flux of secondary particles and X-ray and gamma-rays of atmospheric origin produced by the interaction of the cosmic rays is very low. This low background, in the presence of which one has to detect the feeble signal from cosmic sources is a major advantage in conducting hard X-ray observations from India. The second advantage is that many bright sources like Cyg X-1Crab NebulaScorpius X-1 and Galactic Centre sources are observable from Hyderabad due to their favourable declination. With these considerations, an X-ray astronomy group was formed at TIFR in 1967 and development of an instrument with an orientable X-ray telescope for hard X-ray observations was undertaken. The first balloon flight with the new instrument was made on 28 April 1968 in which observations of Scorpius X-1 were successfully carried out. In a succession of balloon flights made with this instrument between 1968 and 1974 a number of binary X-ray sources including Scorpius X-1, Cyg X-1Her X-1 etc. and the diffuse cosmic X-ray background were studied. Many new and astrophysically important results were obtained from these observations.
One of most important achievements of ISRO in this field was the discovery of three species of bacteria in the upper stratosphere at an altitude of between 20–40 km. The bacteria, highly resistant to ultra-violet radiation, are not found elsewhere on Earth, leading to speculation on whether they are extraterrestrial in origin. These three bacteria can be considered to be extremophiles. Until then, the upper stratosphere was believed to be inhospitable because of the high doses of ultra-violet radiation. The bacteria were named as Bacillus isronensis in recognition of ISRO's contribution in the balloon experiments, which led to its discovery, Bacillus aryabhata after India's celebrated ancient astronomer Aryabhata and Janibacter Hoylei after the distinguished astrophysicist Fred Hoyle.
Astrosat
The Astrosat is India first multiwave length space observatory and full-fledged astronomy satellite.Its observation study includes active galactic nuclei,hot white dwarfs,pulsations of pulsarsbinary star systemssuper massive black holes located at the center of the galaxies.etc.
Extraterrestrial exploration:

First mission to the Moon: Chandrayaan-1

Chandrayaan-1 was India's first mission to the moon. The unmanned lunar exploration mission included a lunar orbiter and an impactor called the Moon Impact Probe. ISRO launched the spacecraft using a modified version of the PSLV on 22 October 2008 from Satish Dhawan Space Centre, Sriharikota. The vehicle was successfully inserted into lunar orbit on 8 November 2008. It carried high-resolution remote sensing equipment for visible, near infrared, and soft and hard X-ray frequencies. During its 312 days operational period (2 years planned), it surveyed the lunar surface to produce a complete map of its chemical characteristics and 3-dimensional topography. The polar regions were of special interest, as they possibly had ice deposits. The spacecraft carried a total of 11 instruments: 5 Indian and 6 from foreign institutes and space agencies (including NASAESABulgarian Academy of SciencesBrown University and other European and North American institutes/companies) which were carried free of cost. Chandrayaan-1 became the first lunar mission to discover existence of water on the Moon. The Chandrayaan-166 team was awarded the American Institute of Aeronautics and Astronautics SPACE 2009 award, the International Lunar Exploration Working Group's International Co-operation award in 2008, and the National Space Society's 2009 Space Pioneer Award in the science and engineering category.

Mars Orbiter Mission (Mangalayaan)

The Mars Orbiter Mission (MOM), informally known as Mangalayaan, was launched into Earth orbit on 5 November 2013 by the Indian Space Research Organisation (ISRO) and has entered Mars orbit on 24 September 2014. India is the first country to enter Mars orbit in first attempt. It was completed at a record cost of $74 million.
MOM was successfully placed into Mars orbit on 24 September 2014 at 8:23 AM IST.
The spacecraft had a launch mass of 1,337 kg (2,948 lb), with 15 kg (33 lb) of five scientific instruments as payload.
The National Space Society awarded the Mars Orbiter Mission team the 2015 Space Pioneer Award in the science and engineering category.




No comments:

Post a Comment

Comments System

Disqus Shortname